第五百零一章 生物学大杀器(3 / 5)

面,未来美国能够制衡我们的地方就不多了。现在我们已经能够完成实验室层面高水平的碳基芯片的制备工作,我们团队和华威海思合作,正在抓紧时间进行碳基芯片商业化开发,一旦成功,足以改变全球半导体产业的格局。到时候,中美两国的竞争格局又会完全不同。我们现在不能有丝毫的懈怠啊。”

庞学林不由得哭笑不得,将目光转向石毅道:“石教授,你们呢?”

石毅微微一笑,说道:“庞教授,我们恐怕一时半会儿也走不开,而且你就算把大家赶出实验室,恐怕也没人愿意离开,现在整个实验室的人都快疯了……”

庞学林眼睛一亮:“你们把动态APT技术搞出来了?”

石毅微微一笑,点头道:“现在正在进行测试,安德森·怀特和杨和平这两个家伙,已经在实验室待了一周都不愿意出来了,还有那些参与这个项目的成员,也一个个巴不得每天睡在实验室。”

庞学林笑道:“那行,待会儿我去你们实验室看看。其他没什么事的话大家都散了吧,徐教授,你们假如有什么困难记得随时跟我沟通。”

徐兴国笑道:“行,那我就先回去了。”

相比于钱塘实验室其他项目团队,徐兴国的碳基芯片项目组更偏商业化一点,一旦成功,对产业界影响力更大。

但相对于科学界,影响力可能就没那么大了。

毕竟碳基芯片各种理论和概念并不新颖,很难拿到诺奖。

反倒是石毅领导的动态APT项目,影响力更大。

观察微观物质世界一直以来都是人们的梦想,除了好奇心的驱使,更多地是因为微观结构往往与物质的某种属性或功能密切相关。

比如一辆自行车,其组成材料仅仅是金属和橡胶,但当把金属和橡胶加工成一定的形状并把它们组装起来之后,就具有了交通工具的功能。

微观的物质或者各种分子机器,也遵循类似的规律,只不过组成它们的基本材料是微观的原子。由原子按照一定规则排列形成的结构构成了各种功能的基础。

反过来说,一旦了解了物质的结构,人们就有可能了解微观物质实现某种功能的机理,然后通过影响、改造甚至设计新结构来实现人们需要的功能。

很多功能材料的发明或发现都是基于此类方法。

在这种需求的驱动之下,人们不断发明各种手段来观察物质的结构。

在17世纪的时候,列文·虎克发明的光学显微镜,就已经能让人们把物体放大几十上百倍,从而观察到微小的细胞。

随着光学技术的发展,光学显微镜技术已经能帮助人们来观察微米尺度上的材料微观纹理或者细胞内的细胞器。

然而这样的放大倍数仍然远远达不到原子水平,不足以解释结构与功能的更本质关系,因为更多的本质因素多数隐藏于更精细的原子结构中。

对于生物体来说,其最重要和最核心的功能单位非蛋白质莫属。生物体的功能和各种生命活动,基本都是通过蛋白质来实现的。

每一个蛋白质都是一个长串的氨基酸单分子链,由20种氨基酸按照不同的次序排列而成。

这个单分子链在三维空间中的进一步折叠形成了不同的蛋白质结构。

生物体中的蛋白质就好像是一个个分子机器,多数具有特定的结构,来实现催化、运动或信号传导等功能。

这些蛋白质的三维结构通常非常复杂,常常随周围环境的变化而变化,很多时候还要受到其他蛋白质分子机器或者各种小分子的精确调控。

例如,霍乱菌表面的分泌系统,通常由十几个蛋白质组成,在细菌的内外膜上形成一个孔道,选择性地将霍乱毒素分泌到细胞外,用来攻击宿