anrees实验看到了前后两个光信号,且光信号符合预期,那么就说存在逆β衰变反应,进而证明了存在中微子。”
“对这一实验进一步分析,正负电子湮灭产生的光信号说明了核反应堆产生的中微子伴随着正电子出现,所以这个实际上为反电子中微子。早期的太阳中微子发现者ray davis曾尝试过同样利用核反应堆的中微子,用这一反应来检测。但是从核反应堆他得不到预期的结果。后来这一同样反应被用在探测太阳中微子上,是可以看到结果的。这个说明伴随着e和e+反应的中微子是不同的。核反应堆产生的是反电子中微子,而太阳核反应产生的是电子中微子。这个的根本原因来自于核反应左右两边除了要求电荷守恒外,还要求轻子数守恒。正电子、反电子中微子的轻子数记为e,电子、电子中微子的轻子数是+e。”
“其后,lederan等人研究加速器里产生的中微子。加速器中产生的中微子主要来自π介子衰变。他们期待两个逆β衰变反应。然而,他们没有观测到反应1,只有反应2。这个说明加速器产生的中微子,在逆β衰变反应过程中总是伴随着正缪子而非正电子。缪子和电子的性质相仿,但质量更大。它们归类为轻子。这说明轻子数守恒还要细分成电子轻子数守恒和缪子轻子数守恒。因此他们观测到的须是反缪子中微子。”
“第三种中微子在更高能量的加速器tevatron上被发现donut实验。跟之前类似,它们在反应时伴随着陶子。陶子也是轻子的一种,但是质量更大,甚至大于质子,因此需要更大的能量来制造(由爱因斯坦质能方程),这也是陶子和陶子中微子发现得较晚的原因。类似地,对陶子也要引入了一个陶子轻子数。其中,中性流通道对所有种类中微子都能探测,带电流通道只能探测电子中微子,而与电子的弹性散射反应中,电子中微子的反应几率更高。这样通过分析中性流通道的探测结果,可以得到所有种类中微子的总量,而分析带电流探测结果可以得到电子中微子的量,从而算出电子中微子的转化概率。”
乔安华不疾不徐,将如何分别三种不同种类的中微子跟庞学林讲述了一遍。
庞学林微微一笑,说道:“乔教授,你应该知道,不同味的中微子,可以通过中微子振荡进行相互转化,那你有没有考虑过转化的过程中,会不会产生新的中微子呢?”
乔安华微微一愣,不解地看着庞学林道:“庞教授,你的意思是?”
庞学林道:“我的想法是,是否存在一种惰性中微子,比如电中微子转化成陶中微子,首先通过中微子振荡,转化为这种惰性中微子,然后再由这种惰性中微子转变为陶中微子,陶中微子转化为缪中微子时,同样通过这种惰性中微子进行转化,只是这个过程的时间太短,以至于我们现在都没有足够的办法进行检测!”