第二,能够初始化量子比特到某个基准态,如|000…。
第三,必须具有足够长的相干时间,要比完成量子门的操作时间长很多。
第四,具有一套通用的量子门。
第五,能够实现对特定量子比特位的测量。
为了能够在物理上实现量子计算,研究人员们基于以上几个要求,在两大方向上进行了深入的研究。
第一种,就是基于固态电磁电路的量子计算机。
这种方案又包括自旋系统,超导系统,量子点系统,核磁共振系统等不同方案。
第二种就是基于量子光学系统的量子计算机。
包括离子阱、腔量子电动力学系统、线性光学系统、光子晶体和光子晶体束缚冷原子体系等实现方案。
……
花了整整半个月的时间,庞学林将一百篇论文以及系统给的量子计算机的技术手册部刷了一遍,对量子计算机有了一个基本的了解。
然后他发现,想要将系统给的这台量子计算机在现实中制造出来,短时间内可能性不大。
因为系统给的这台量子计算机,属于拓扑量子计算机,其量子芯片内的量子比特数,高达一千万个,计算力比世界所有计算机加起来还要高出好几个数量级。
而想要制造这种量子芯片,需要基于一种14电荷的准粒子,这种粒子的行为与那些带有奇数分之一电荷的准粒子十分不同,当电子、光子或是带有奇数分之一电荷的粒子和另外一个粒子交换位置时,不会产生多大的整体效应。
相比而言,14电荷准粒子的位置交换可编织出一个能保留粒子历史信息的“辫子”,表现出了具有“非阿贝尔”特性。
虽然现实世界早在2008年,就已经有以色列的科学家发现了这种准粒子的存在。
但想要准确找到对应的材料,需要投入的人力物力,基本上是一个天文数字。
不过虽然没办法将这台量子计算机的量子芯片,但通过这本技术手册,庞学林却找到了一条利用石墨烯材料与常规超导体的近邻效应,构建马约拉纳费米子的办法。
而马约拉纳费米子,恰恰是实现真正意义上量子拓扑计算的最关键的一步。
“或许,谷歌所说的量子霸权,可以在我的手里实现。”
庞学林喃喃自语道。